## What will we cover?

In this lesson we will learn about market **Beta** with S&P 500 index, how to calculate it, and comparison of calculations from last lesson.

The objective of the tutorial is:

- Understand what market
**Beta**tells you. - How to calculate the market (S&P 500)
**Beta**. - See how
**Beta**is related with**Linear Regression**.

## Step 1: What is BETA and how to interpret the value

**Beta** is a measure of a stock’s volatility in relation to the overall market (S&P 500). The S&P 500 index has **Beta** 1.

High-beta stocks are supposed to be riskier but provide higher potential return. While, low-beta stocks pose less risk but also lower returns.

**Interpretation**

**Beta**above 1: stock is more**volatile**than the market, but expects higher return.**Beta**below 1: stock with lower**volatility**, and expects less return.

The formula for **Beta** is **Covariance** divided by **variance**.

This sound more scary than it is.

The Beta on financial pages, like **Yahoo! Finance**, are calculated on the monthly price.

## Step 2: Get some historic stock prices with Pandas Datareader

Let’s make an example here.

```
import numpy as np
import pandas_datareader as pdr
import datetime as dt
import pandas as pd
from sklearn.linear_model import LinearRegression
tickers = ['AAPL', 'MSFT', 'TWTR', 'IBM', '^GSPC']
start = dt.datetime(2015, 12, 1)
end = dt.datetime(2021, 1, 1)
data = pdr.get_data_yahoo(tickers, start, end, interval="m")
data = data['Adj Close']
log_returns = np.log(data/data.shift())
```

Where we notice that we read data on **interval=”m”**, which gives the monthly data.

## Step 3: Calculate the BETA

Then the **Beta** is calculated as follows.

```
cov = log_returns.cov()
var = log_returns['^GSPC'].var()
cov.loc['AAPL', '^GSPC']/var
```

For Apple, it was 1.25.

If you wonder if it is related to the **Beta** value from **Linear** **Regression**. Let’s check it out.

```
X = log_returns['^GSPC'].iloc[1:].to_numpy().reshape(-1, 1)
Y = log_returns['AAPL'].iloc[1:].to_numpy().reshape(-1, 1)
lin_regr = LinearRegression()
lin_regr.fit(X, Y)
lin_regr.coef_[0, 0]
```

Also giving 1.25. Hence, it is the same calculation behind it.

## Want to learn more?

This is part of a 2.5-hour full video course in 8 parts about Risk and Return.

In the next lesson you will learn how to Calculate the CAPM with Python in 3 Easy Steps.

**12% Investment** Solution

Would you like to get 12% in return of your investments?

D. A. Carter promises and shows how his simple investment strategy will deliver that in the book **The 12% Solution**. The book shows how to test this statement by using backtesting.

**Did Carter find a strategy that will consistently beat the market?**

Actually, it is not that hard to use Python to validate his calculations. But we can do better than that. If you want to work smarter than traditional investors then continue to read here.

## Python for Finance: Unlock Financial Freedom and Build Your Dream Life

Discover the key to financial freedom and secure your dream life with Python for Finance!

Say goodbye to financial anxiety and embrace a future filled with confidence and success. If you’re tired of struggling to pay bills and longing for a life of leisure, it’s time to take action.

Imagine breaking free from that dead-end job and opening doors to endless opportunities. With Python for Finance, you can acquire the invaluable skill of financial analysis that will revolutionize your life.

Make informed investment decisions, unlock the secrets of business financial performance, and maximize your money like never before. Gain the knowledge sought after by companies worldwide and become an indispensable asset in today’s competitive market.

Don’t let your dreams slip away. Master Python for Finance and pave your way to a profitable and fulfilling career. Start building the future you deserve today!

Python for Finance a 21 hours course that teaches investing with Python.

Learn **pandas**, **NumPy**, **Matplotlib** for Financial Analysis & learn how to Automate Value Investing.

*“Excellent course for anyone trying to learn coding and investing.”* – **Lorenzo B.**